IV Combined Ocean Outfall Data

Data Summaries

This section presents the results of analyses of the combined or mixed effluent stream being discharged to the South Bay Ocean Outfall from the South Bay Wastewater Reclamation and International Wastewater Treatment Plant for 2007.

SB_ITP_COMB_EFF designates a composite sample taken at a point downstream of the discharges of both plants where the wastewater stream is a mixture of both effluents (the secondary or tertiary effluent from SBWRP and the primary effluent from the IWTP).

Sampling and monitoring analyses occurred quarterly in February, May, August and October.

SOUTH BAY WATER RECLAMATION PLANT QUARTERLY SEWAGE: COMBINED OUTFALL (SB_ITP_COMB_EFF)

From: 01-JAN-2007 To: 31-DEC-2007

Source: SB_ITP_COMB_EFF							
Date:			13-FEB-2007	14-FEB-2007	08-MAY-2007	09-MAY-2007	08-AUG-2007
Sample ID: MDI	Unit	-	P370710	P370711	P380555	P380556	P392180
BOD (Biochemical Oxygen Demand)		MG/L	93.7	========	101.0		105.0
Total Suspended Solids	1.6	- /	37.0		41.7		42.0
Volatile Suspended Solids	1.6	MG/L	22.0		33.3		33.0
pH	1.0	PH	7.7	7.3	7.9	7.8	7.4
Settleable Solids	.1	ML/L	, , ,	0.3	7.9	0.5	7 • 1
Turbidity	.13	,	24.0	0.5	29.2	0.0	29.6
Total Kjeldahl Nitrogen	1.6	MG/L	8.2		37.2		44.1
Chlorine Residual, Total	.11	MG/L	0.2	ND	37.2	ND	11.1
Ammonia-N	.3	MG/L	24	IVD	31	IVD	35
Total Alkalinity (bicarbonate)	20	MG/L	242.0		309.0		312.0
Calcium Hardness	.1	MG/L	199		215		221
Magnesium Hardness	. 4	MG/L	129		156		182
Total Hardness	. 4	MG/L	328		371		404
Aluminum	47	UG/L	248		190		427
Antimony	2.9	,	ND		ND		ND
Arsenic	.4	UG/L	1.48		1.67		1.40
Barium		UG/L	38.0		33.7		18.7
Bervllium		UG/L UG/L	ND		ND		ND
Boron	1.7	UG/L UG/L	363.0		435.0		488.0
Cadmium	.53	UG/L UG/L	0.7		455.0 ND		400.0 ND
Chromium	1.2	UG/L UG/L	3.3		1.7		2.7
Cobalt	.85	UG/L UG/L	ND		0.9		ND
		UG/L UG/L					
Copper	.63 37	UG/L UG/L	21.9 1230		17.1 1240		21.9 2050
Iron	2	UG/L UG/L					
Lead		UG/L UG/L	ND		ND 83.50		ND
Manganese	.24	UG/L UG/L	139.0 ND		83.50 ND		132.00
Mercury	.09	UG/L UG/L			8.3		ND 8.1
Molybdenum		,	8.5				
Nickel	.53	UG/L	23.7		25.8		20.4
Selenium	.28	UG/L	2.04		1.92		2.18
Silver	. 4	UG/L	ND		ND		ND
Thallium	3.9	UG/L	ND		ND		ND
Vanadium	.64	UG/L	3.7		1.2		0.9
Zinc	.41	UG/L	43.6		29.9		24.3
Bromide	.1	MG/L	0.37		ND		0.43
Chloride	7	MG/L	259		332		372
Fluoride	.05	MG/L	0.59		0.70		0.74
Nitrate	.04	MG/L	5.00		ND		ND
Ortho Phosphate	.2	MG/L	4.51		6.30		3.17
Sulfate	9	MG/L	265		338		344
Calcium	.04	- ,	80		86		89
Lithium		MG/L	0.05		0.06		0.08
Magnesium	.1	MG/L	31		38		44
Potassium	.3	MG/L	19		21		25
Sodium	1	MG/L	221		268		317
Cyanides, Total		MG/L	0.006		0.003		0.003
Sulfides-Total	.18	MG/L	ND		0.30		ND

ND= Not Detected NA= Not Analyzed NS= Not Sampled

Chromium results are for Total Chromium

SOUTH BAY WATER RECLAMATION PLANT QUARTERLY SEWAGE: COMBINED OUTFALL (SB_ITP_COMB_EFF)

From: 01-JAN-2007 To: 31-DEC-2007

Source: SB_ITP_COMB_EFF			07 077 0007	00 000 0007	00 000 0007
Date: Sample ID: MD		Q	07-SEP-2007 P392181	02-OCT-2007 P399382	03-OCT-2007 P399383
=======================================			========	========	========
BOD (Biochemical Oxygen Demand	2	MG/L		119.0	
Total Suspended Solids	1.6	MG/L		43.0	
Volatile Suspended Solids	1.6	MG/L		35.0	
рН		PH	7.3	7.7	7.5
Settleable Solids	.1	ML/L	10.5		3.5
Turbidity	.13	NTU		22.0	
Total Kjeldahl Nitrogen	1.6	MG/L		44.4	
Chlorine Residual, Total	.11	MG/L	ND		ND
Ammonia-N	.3	MG/L		36	
Total Alkalinity (bicarbonate)	20	MG/L		309.0	
Calcium Hardness	.1	MG/L		212	
Magnesium Hardness	. 4	MG/L		170	
Total Hardness	. 4	MG/L		382	
Aluminum	47	UG/L		208	
Antimony	2.9	UG/L		ND	
Arsenic	. 4	UG/L		1.78	
Barium	.039	UG/L		21.0	
Beryllium	.022	UG/L		ND	
Boron	1.7	UG/L		448.0	
Cadmium	.53	UG/L		ND	
Chromium	1.2	UG/L		2.7	
Cobalt	.85	UG/L		ND	
Copper	.63	UG/L		15.4	
Iron	37	UG/L		2030.0	
Lead	2	UG/L		ND	
Manganese	.24	UG/L		112.00	
Mercury	.09	UG/L		ND	
Molybdenum	.89	UG/L		8.5	
Nickel	.53	UG/L		41.2	
Selenium	.28	UG/L		2.55	
Silver	. 4	UG/L		ND	
Thallium	3.9	UG/L		ND	
Vanadium	.64	UG/L		ND	
Zinc	.41	UG/L		33.0	
Bromide	.1	MG/L		0.50	
Chloride	7	MG/L		366	
Fluoride	.05	MG/L		0.52	
Nitrate	.04	MG/L		0.12	
Ortho Phosphate	.2	MG/L		5.13	
Sulfate	9	MG/L		371	
Calcium	.04	MG/L		85	
Lithium	.002	MG/L		0.08	
Magnesium	.1	MG/L		41	
Potassium	.3	MG/L		23	
Sodium	1	MG/L		306	
Cyanides, Total		MG/L		0.005	
Sulfides-Total	.18	MG/L		ND	

ND= Not Detected NA= Not Analyzed NS= Not Sampled

Chromium results are for Total Chromium

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED OUTFALL (SB_ITP_COMB_EFF) Temperature

From 01-JAN-2007 to 31-DEC-2007

Temperature
GRAB
(C)
========
20.1
23.5
28.0
26.7
24.6
28.0
20.1

NA= Not Analyzed NS= Not Sampled ND= Not Detected

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED EFFLUENT (SB_ITP_COMB_EFF) Ammonia-Nitrogen and Total Cyanides

From: 01-JAN-2007 To: 31-DEC-2007

MDL/Units Source:		Ammonia-N 0.3 MG/L COMB EFF	Cyanides,Total .002 MG/L COMB EFF
			==========
FEBRUARY -2	2007	23.6	0.0057
MAY -2	2007	30.6	0.0032
AUGUST -2	2007	35.1	0.0030
OCTOBER -2	2007	35.5	0.0046
Average:		31.2	0.0041

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED OUTFALL (SB_ITP_COMB_EFF) Radioactivity

From: 01-JAN-2007 To: 31-DEC-2007

Source	Month		Gross	Alpha	Radiation
SB ITP COMB EFF SB ITP COMB EFF SB ITP COMB EFF SB ITP COMB EFF	MAY - AUGUST -	2007 2007 2007 2007			3.7±1.6 2.7±1.4 3.1±1.6 1.9±1.2
AVERAGE					2.9±1.4
Source	Month	====	Gross	Beta	Radiation
SB_ITP_COMB_EFF SB_ITP_COMB_EFF SB_ITP_COMB_EFF SB_ITP_COMB_EFF	MAY - AUGUST -	·2007 ·2007 ·2007 ·2007			18.4±3.4 22.5±5.0 24.0±5.3 20.3±5.4
		====			

ND= not detected NA= not analyzed NS= not sampled

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL: COMBINED EFFLUENT (SB_ITP_COMB_EFF) Chlorinated Pesticide Analysis From 01-JAN-2007 To 31-DEC-2007

Source: SB ITP COMB EFF

Source: SB_IIP_COMB_EFF FEB MAY	AUG	OCT	2007
Analyte MDL Units	=====	=====	Avg
Aldrin 60 NG/L ND ND	ND	ND	ND
Dieldrin 50 NG/L ND ND	ND	ND	ND
BHC, Alpha isomer 20 NG/L ND ND	ND	ND	ND
BHC, Beta isomer 20 NG/L ND ND	ND	ND	ND
BHC, Gamma isomer 10 NG/L 21 28	14	10	18
BHC, Delta isomer 20 NG/L ND ND	ND	ND	ND
p,p-DDD 20 NG/L ND ND	ND	ND	ND
p,p-DDE 20 NG/L ND ND	ND	ND	ND
p,p-DDT 50 NG/L ND ND	ND	ND	ND
o,p-DDD 20 NG/L ND ND	ND	ND	ND
o,p-DDE 100 NG/L ND ND	ND	ND	ND
o,p-DDT 20 NG/L ND ND	ND	ND	ND
Heptachlor 20 NG/L ND ND	ND	ND	ND
Heptachlor epoxide 20 NG/L ND ND	ND	ND	ND
Alpha (cis) Chlordane 30 NG/L ND ND	ND	ND	ND
Gamma (trans) Chlordane 80 NG/L ND ND	ND	ND	ND
Alpha Chlordene NG/L NA NA	NA	NA	NA
Gamma Chlordene NG/L NA NA	NA	NA	NA
Oxychlordane 20 NG/L ND ND	ND	ND	ND
Trans Nonachlor 20 NG/L ND ND	ND	ND	ND
Cis Nonachlor 20 NG/L ND ND	ND	ND	ND
Alpha Endosulfan 30 NG/L ND ND	ND	ND	ND
Beta Endosulfan 20 NG/L ND ND	ND	ND	ND
Endosulfan Sulfate 20 NG/L ND ND	ND	ND	ND
Endrin 50 NG/L ND ND	ND	ND	ND
Endrin aldehyde 20 NG/L ND ND	ND	ND	ND
Mirex 20 NG/L ND ND Methoxychlor 60 NG/L ND ND	ND	ND	ND
	ND	ND	ND
Toxaphene 4000 NG/L ND ND	ND	ND	ND
PCB 1016 4000 NG/L ND ND PCB 1221 4000 NG/L ND ND	ND ND	ND ND	ND ND
PCB 1232 4000 NG/L ND ND PCB 1232 4000 NG/L ND ND	ND ND	ND ND	ND ND
PCB 1242 4000 NG/L ND ND	ND	ND ND	ND ND
PCB 1248 2000 NG/L ND ND	ND	ND	ND
PCB 1254 2000 NG/L ND ND	ND	ND	ND
PCB 1260 2000 NG/L ND ND	ND	ND	ND
PCB 1262 2000 NG/L ND ND	ND	ND	ND
=======================================	=====	=====	=====
Aldrin + Dieldrin 60 NG/L 0 0	0	0	0
Hexachlorocyclohexanes 20 NG/L 21 28	14	10	18
DDT and derivatives 100 NG/L 0 0	0	0	0
Chlordane + related cmpds. 80 NG/L 0 0	0	0	0
Polychlorinated biphenyls 4000 NG/L 0 0	0	0	0
Endosulfans 30 NG/L 0 0	0	0	0
	=====		=====
	_	0	0
Heptachlors 20 NG/L 0 0	0		

[&]quot;Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds."

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL: COMBINED EFFLUENT Acid Extractables From 01-JAN-2007 To 31-DEC-2007

Source: SB_ITP_COMB_EFF

Analyte	MDL	Units	FEB	MAY	AUG	OCT	2007 Avg
2 -hlaushausl	1 76	=====	=====	=====	=====	=====	=====
2-chlorophenol		UG/L	ND	ND	ND	ND	ND
2,4-dichlorophenol		UG/L	ND	ND	ND	ND	ND
4-chloro-3-methylphenol		UG/L	ND	ND	ND	ND	ND
2,4,6-trichlorophenol		UG/L	ND	ND	ND	ND	ND
Pentachlorophenol		UG/L	ND	ND	ND	ND	ND
Phenol	2.53	UG/L	15.6	33.3	10.3	26.8	21.5
2-nitrophenol	1.88	UG/L	ND	ND	ND	ND	ND
2,4-dimethylphenol	1.32	UG/L	ND	ND	ND	ND	ND
2,4-dinitrophenol	6.07	UG/L	ND	ND	ND	ND	ND
4-nitrophenol	3.17	UG/L	ND	ND	ND	ND	ND
2-methyl-4,6-dinitrophenol	4.29	UG/L	ND	ND	ND	ND	ND
Total Chlorinated Phenols	5.87	UG/L	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	6.07	UG/L	15.6	33.3	10.3	26.8	21.5
Total Phenols	6.07	UG/L	15.6	33.3	10.3	26.8	21.5
2-methylphenol	1.51	UG/L	ND	ND	ND	ND	ND
3-methylphenol(4-MP is unresolved)	4.4	UG/L	ND	ND	ND	ND	ND
4-methylphenol(3-MP is unresolved)	4.22	UG/L	46.0	10.4	ND	12.2	17.2
2,4,5-trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND

From 01-JAN-2007 To 31-DEC-2007

Source: SB_ITP_COMB_EFF

Source. Sb_IIF_COMB_EFF			FEB	MAY	AUG	OCT	2007
Analyte	MDL	Units	=====	=====	=====		Avg
bis(2-chloroethyl) ether	2.62	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	8.95	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	1.63	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.52	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	3.55	UG/L	ND	ND	ND	ND	ND
Isophorone	1.93	UG/L	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane	1.57	UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	1.44	UG/L	ND	ND	ND	ND	ND
Naphthalene	1.52	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene	2.87	UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Acenaphthylene	2.02	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	3.26	UG/L	ND	ND	ND	ND	ND
2,6-dinitrotoluene	1.93	UG/L	ND	ND	ND	ND	ND
Acenaphthene	2.2	UG/L	ND	ND	ND	ND	ND
2,4-dinitrotoluene	1.49	UG/L	ND	ND	ND	ND	ND
Fluorene	2.43	UG/L	ND	ND	ND	ND	ND
4-chlorophenyl phenyl ether	3.62	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	6.97	UG/L	ND	12.2	ND	8.5	5.2
N-nitrosodiphenylamine	2.96	UG/L	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether	4.04	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	4.8	UG/L	ND	ND	ND	ND	ND
Phenanthrene	4.15	UG/L	ND	ND	ND	ND	ND
Anthracene	4.04	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	6.49	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	2.01	UG/L	ND ND	ND	ND ND	ND	ND ND
Fluoranthene	6.9	UG/L	ND ND	ND	ND ND	ND	ND
	5.19	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Pyrene							
Butyl benzyl phthalate	4.77	UG/L	ND	ND	ND	ND	ND
Chrysene	7.49	UG/L	ND	ND	ND	ND	ND
Benzo[A] anthracene	7.68	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	10.43		ND	ND	ND	ND	ND
Di-n-octyl phthalate	8.59	UG/L	ND	ND	ND	ND	ND
Benzo[K] fluoranthene	7.36	UG/L	ND	ND	ND	ND	ND
3,4-benzo(B)fluoranthene	6.63	UG/L	ND	ND	ND	ND	ND
Benzo[A]pyrene	6.53	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	6.27	UG/L	ND	ND	ND	ND	ND
Dibenzo(A,H)anthracene	6.19	UG/L	ND	ND	ND	ND	ND
Benzo[G,H,I]perylene	6.5	UG/L	ND	ND	ND	ND	ND
1,2-diphenylhydrazine	2.49	UG/L	ND =====	ND =====	ND	ND =====	ND =====
Polynuc. Aromatic Hydrocarbons	7.68 =====	UG/L =====	0.0	0.0	0.0	0.0	0.0
Base/Neutral Compounds	10.43	UG/L	3.1	12.2	0.0	8.5	6.0
1-methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
2-methylnaphthalene	2.25	UG/L	ND	ND	ND	ND	ND
2,6-dimethylnaphthalene	3.31	UG/L	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene	4.4	UG/L	ND	ND	ND	ND	ND
1-methylphenanthrene	6.29	UG/L	ND ND	ND	ND ND	ND	ND
Benzo[e]pyrene	7.67	UG/L	ND ND	ND	ND ND	ND	ND
Perylene	6.61	UG/L UG/L	ND ND	ND ND	ND ND	ND	ND ND
=	2.43	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Biphenyl	4.43	OG/L	MD	ND	MD	MD	MD

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED EFFLUENT Tributyl Tin Analysis From 01-JAN-2007 To 31-DEC-2007

Source: SB_ITP_COMB_EFF

			FEB	MAY	AUG	OCT	2007
Analyte	${\tt MDL}$	Units					Avg
							=====
Dibutyl tin	7	UG/L	ND	ND	ND	ND	ND
Monobutyl Tin	16	UG/L	ND	ND	ND	ND	ND
Tributyl tin	2	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL: COMBINED EFFLUENT Priority Pollutants Purgeables From 01-JAN-2007 To 31-DEC-2007

Source: SB_ITP_COMB_EFF

Source: Sb_IIP_COMB_EFF			FEB	MAY	SEP	OCT	2007
Analyte	MDL	Units	=====				Avg
Dichlorodifluoromethane		UG/L	NR	ND	ND	ND	ND
Chloromethane	1	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	1	UG/L	ND	ND	ND	ND	ND
Bromomethane	1	UG/L	ND	ND	ND	ND	ND
Chloroethane	1	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	1	UG/L	ND	ND	ND	ND	ND
Acrolein		UG/L	ND	ND	ND	ND	ND
1,1-dichloroethane	1	UG/L UG/L	ND 1.1	ND 2.4	ND 1 0	ND 1 E	ND
Methylene chloride trans-1,2-dichloroethene	1	UG/L UG/L	ND	ND	1.9 ND	1.5 ND	1.7 ND
1,1-dichloroethene	1	UG/L	ND	ND	ND	ND	ND
Acrylonitrile		UG/L	ND	ND	ND	ND	ND
Chloroform	1	UG/L	11.6	2.8	3.2	5.1	5.7
1,1,1-trichloroethane	1	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	1	UG/L	ND	ND	ND	ND	ND
Benzene	1	UG/L	ND	ND	ND	ND	ND
1,2-dichloroethane	1	UG/L	ND	ND	ND	ND	ND
Trichloroethene	1	UG/L	ND	ND	ND	ND	ND
1,2-dichloropropane	1	UG/L	ND 1	ND	ND	ND	ND
Bromodichloromethane 2-chloroethylvinyl ether	1 1	UG/L UG/L	1.6 ND	ND ND	ND ND	ND ND	0.4 ND
cis-1,3-dichloropropene	1	UG/L	ND ND	ND	ND	ND	ND ND
Toluene	1	UG/L	5.8	5.1	6.2	10.0	6.8
trans-1,3-dichloropropene	1	UG/L	ND	ND	ND	ND	ND
1,1,2-trichloroethane	1	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	1	UG/L	<1.0	ND	ND	ND	0.0
Dibromochloromethane	1	UG/L	2.2	ND	ND	ND	0.6
Chlorobenzene	1	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	1	UG/L	ND	ND	1.9	1.1	0.8
Bromoform	1	UG/L	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	1 1	UG/L	ND ND	ND	ND	ND ND	ND ND
1,3-dichlorobenzene 1,4-dichlorobenzene	1	UG/L UG/L	4.2	ND 3.2	ND 4.2	3.9	3.9
1,2-dichlorobenzene	1	UG/L	ND	ND	ND	ND	ND
		=====		=====			
Halomethane Purgeable Cmpnds	1	UG/L =====	3.8	0.0	0.0	0.0	1.0
Purgeable Compounds	13.8	UG/L	26.5	13.5	17.4	21.6	19.8
Methyl Iodide	1	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	1	UG/L	2.1	1.4	3.3	2.6	2.4
Acetone	20	UG/L	1090	469	462	878	725
Allyl chloride	1	UG/L	ND	ND	ND	ND	ND
Methyl tert-butyl ether	1	UG/L	ND	ND	ND	ND	ND
Chloroprene 1,2-dibromoethane	1.4 3.3	UG/L UG/L	ND	ND	ND	ND	ND
2-butanone	3.3 4	UG/L	ND 129.0	ND 6.2	ND 17.5	ND 32.3	ND 46.3
Methyl methacrylate	4.6	UG/L	ND	ND	ND	ND	ND
2-nitropropane	10	UG/L	ND	ND	ND	ND	ND
4-methyl-2-pentanone	6.1	UG/L	ND	ND	ND	ND	ND
meta,para xylenes	3.1	UG/L	ND	ND	9.4	4.2	3.4
ortho-xylene	3.4	UG/L	ND	ND	6.8	<3.4	<1.7
Isopropylbenzene	4.4	UG/L	ND	ND	ND	ND	ND
Styrene	4.7	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	7.2	UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	4.9	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT QUARTERLY SEWAGE - COMBINED OUTFALL (SB_ITP_COMB_EFF)Organophosphorus Pesticides EPA Method 614/622 (with additions) From 01-JAN-2007 To 31-DEC-2007

Analyte		Units		SB_ITP_COMB_EFF 02-OCT-2007 P399382
Demeton O	.15	UG/L	ND	ND
Demeton S		UG/L	ND	ND
Diazinon		UG/L	ND	ND
Guthion		UG/L	ND	ND
Malathion		UG/L	ND	ND
Parathion	.03	UG/L	ND	ND
Tetraethylpyrophosphate		UG/L	NA	NA
Dichlorvos	.05	UG/L	ND	0.5
Dibrom	.2	UG/L	ND	ND
Ethoprop	.04	UG/L	ND	ND
Phorate	.04	UG/L	ND	ND
Sulfotepp	.04	UG/L	ND	ND
Disulfoton	.02	UG/L	ND	0.2
Monocrotophos		UG/L	NA	NA
Dimethoate	.04	UG/L	ND	ND
Ronnel	.03	UG/L	ND	ND
Trichloronate	.04	UG/L	ND	ND
Merphos	.09	UG/L	ND	ND
Dichlofenthion	.03	UG/L	ND	ND
Tokuthion	.06	UG/L	ND	ND
Stirophos	.03	UG/L	ND	ND
Bolstar	.07	UG/L	ND	ND
Fensulfothion	.07	UG/L	ND	ND
EPN	.09	UG/L	ND	ND
Coumaphos	.15	UG/L	ND	ND
Mevinphos, e isomer	.05	UG/L	ND	ND
Mevinphos, z isomer	.3	UG/L	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND
Thiophosphorus Pesticides		UG/L	0.0	0.0
Demeton -O, -S		UG/L	0.0	0.0
Total Organophosphorus Pesticides		UG/L	0.0	0.7

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Dioxin and Furan Analysis COMBINED OUTFALL

From 01-JAN-2007 To 31-DEC-2007

Analyte:	MDL	Units	Equiv	COMB EFF FEB P370710	COMB EFF MAY P380555	COMB EFF AUG P392180	COMB EFF OCT P399382
2 2 7 0 total CDD	====	DC /T					
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD	500 500	PG/L PG/L	1.000	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8 hexa CDD	500	PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,6_nexa_CDD	500	PG/L	0.100	ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDD	500	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	250	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	500	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	500	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	500	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	500	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	500	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	500	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	500	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	500	PG/L	0.010	ND	ND	ND	ND
octa CDF	1000	PG/L	0.001	ND	ND	ND	ND
				COMB EFF	COMB EFF	COMB EFF	COMB EFF
				COMB EFF TCCD	COMB EFF TCCD	COMB EFF TCCD	COMB EFF TCCD
Analyte:	MDL	Units	Equiv	TCCD	TCCD	TCCD	TCCD
Analyte:	MDL ==== 500	Units ====== PG/L	Equiv ===== 1.000	TCCD FEB	TCCD MAY	TCCD AUG	TCCD OCT
			=====	TCCD FEB P370710	TCCD MAY P380555 ==================================	TCCD AUG P392180	TCCD OCT P399382
2,3,7,8-tetra CDD	==== 500	PG/L	1.000	TCCD FEB P370710 ==================================	TCCD MAY P380555 ==================================	TCCD AUG P392180 =	TCCD OCT P399382 =====
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD	==== 500 500	PG/L PG/L	1.000	TCCD FEB P370710 ==================================	TCCD MAY P380555 ==================================	TCCD AUG P392180 = ND ND	TCCD OCT P399382 ===== ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD	500 500 500	PG/L PG/L PG/L	1.000 0.500 0.100	TCCD FEB P370710 ==================================	TCCD MAY P380555 ==================================	TCCD AUG P392180	TCCD OCT P399382 ===== ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	500 500 500 500 500	PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100	TCCD FEB P370710	TCCD MAY P380555 ==================================	TCCD AUG P392180	TCCD OCT P399382 ND ND ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD	500 500 500 500 500 500 500 1000	PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100	TCCD FEB P370710 ND	TCCD MAY P380555 	TCCD AUG P392180	TCCD OCT P399382 ND ND ND ND ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF	500 500 500 500 500 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100	TCCD FEB P370710 	TCCD MAY P380555 ND	TCCD AUG P392180	TCCD OCT P399382 ND ND ND ND ND ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD cota CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF	500 500 500 500 500 500 500 1000 250 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.001 0.100 0.050	TCCD FEB P370710 ND	TCCD MAY P380555 ND	TCCD AUG P392180 ND	TCCD OCT P399382 ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8-hexa CDD 1,2,3,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 2,3,4,7,8-penta CDF	500 500 500 500 500 500 500 1000 250	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.001 0.001	TCCD FEB P370710 ND	TCCD MAY P380555 ND	TCCD AUG P392180 ND	TCCD OCT P399382 ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF	500 500 500 500 500 500 500 1000 250 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.001 0.100 0.050	TCCD FEB P370710 ==================================	TCCD MAY P380555 ND	TCCD AUG P392180 ND	TCCD OCT P399382 ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF	500 500 500 500 500 500 500 1000 250 500 500 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.001 0.001 0.100 0.050 0.500 0.100	TCCD FEB P370710 ND	TCCD MAY P380555 ND	TCCD AUG P392180 ND	TCCD OCT P399382 ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF	500 500 500 500 500 500 500 1000 250 500 500 500 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.001 0.001 0.050 0.500 0.100 0.100	TCCD FEB P370710	TCCD MAY P380555 ND	TCCD AUG P392180	TCCD OCT P399382
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF	500 500 500 500 500 500 500 1000 250 500 500 500 500 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.100 0.050 0.500 0.100 0.100 0.100	TCCD FEB P370710	TCCD MAY P380555 ND	TCCD AUG P392180 ND	TCCD OCT P399382
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,7,8-hexa CDF 1,2,3,7,8-hexa CDF 1,2,3,7,8-hexa CDF 1,2,3,7,8-hexa CDF 1,2,3,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF	==== 500 500 500 500 500 500 250 500 500 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.001 0.001 0.050 0.500 0.100 0.100 0.100 0.100	TCCD FEB P370710	TCCD MAY P380555 ND	TCCD AUG P392180 ND	TCCD OCT P399382
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF	==== 500 500 500 500 500 500 1000 250 500 500 500 500 500 500 500	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.100 0.050 0.500 0.100 0.100 0.100	TCCD FEB P370710	TCCD MAY P380555 ND	TCCD AUG P392180 ND	TCCD OCT P399382

Above are permit required CDD/CDF isomers.

ND= not detected NA= not analyzed NS= not sampled This page is left blank intentionally